Metamath Proof Explorer


Theorem baerlem3

Description: An equality that holds when X , Y , Z are independent (non-colinear) vectors. Part (3) in Baer p. 45. TODO fix ref. (Contributed by NM, 9-Apr-2015)

Ref Expression
Hypotheses baerlem3.v
|- V = ( Base ` W )
baerlem3.m
|- .- = ( -g ` W )
baerlem3.o
|- .0. = ( 0g ` W )
baerlem3.s
|- .(+) = ( LSSum ` W )
baerlem3.n
|- N = ( LSpan ` W )
baerlem3.w
|- ( ph -> W e. LVec )
baerlem3.x
|- ( ph -> X e. V )
baerlem3.c
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
baerlem3.d
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
baerlem3.y
|- ( ph -> Y e. ( V \ { .0. } ) )
baerlem3.z
|- ( ph -> Z e. ( V \ { .0. } ) )
Assertion baerlem3
|- ( ph -> ( N ` { ( Y .- Z ) } ) = ( ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) .(+) ( N ` { ( X .- Z ) } ) ) ) )

Proof

Step Hyp Ref Expression
1 baerlem3.v
 |-  V = ( Base ` W )
2 baerlem3.m
 |-  .- = ( -g ` W )
3 baerlem3.o
 |-  .0. = ( 0g ` W )
4 baerlem3.s
 |-  .(+) = ( LSSum ` W )
5 baerlem3.n
 |-  N = ( LSpan ` W )
6 baerlem3.w
 |-  ( ph -> W e. LVec )
7 baerlem3.x
 |-  ( ph -> X e. V )
8 baerlem3.c
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
9 baerlem3.d
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) )
10 baerlem3.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
11 baerlem3.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
12 eqid
 |-  ( +g ` W ) = ( +g ` W )
13 eqid
 |-  ( .s ` W ) = ( .s ` W )
14 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
15 eqid
 |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) )
16 eqid
 |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) )
17 eqid
 |-  ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) )
18 eqid
 |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) )
19 eqid
 |-  ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) )
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 baerlem3lem2
 |-  ( ph -> ( N ` { ( Y .- Z ) } ) = ( ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) .(+) ( N ` { ( X .- Z ) } ) ) ) )