| Step |
Hyp |
Ref |
Expression |
| 1 |
|
baerlem3.v |
|- V = ( Base ` W ) |
| 2 |
|
baerlem3.m |
|- .- = ( -g ` W ) |
| 3 |
|
baerlem3.o |
|- .0. = ( 0g ` W ) |
| 4 |
|
baerlem3.s |
|- .(+) = ( LSSum ` W ) |
| 5 |
|
baerlem3.n |
|- N = ( LSpan ` W ) |
| 6 |
|
baerlem3.w |
|- ( ph -> W e. LVec ) |
| 7 |
|
baerlem3.x |
|- ( ph -> X e. V ) |
| 8 |
|
baerlem3.c |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 9 |
|
baerlem3.d |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 10 |
|
baerlem3.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 11 |
|
baerlem3.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
| 12 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 13 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 14 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 15 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 16 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
| 17 |
|
eqid |
|- ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) |
| 18 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 19 |
|
eqid |
|- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
| 20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
baerlem3lem2 |
|- ( ph -> ( N ` { ( Y .- Z ) } ) = ( ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Y ) } ) .(+) ( N ` { ( X .- Z ) } ) ) ) ) |