Description: An equality that holds when X , Y , Z are independent (non-colinear) vectors. First equation of part (5) in Baer p. 46. (Contributed by NM, 10-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | baerlem3.v | |- V = ( Base ` W ) |
|
baerlem3.m | |- .- = ( -g ` W ) |
||
baerlem3.o | |- .0. = ( 0g ` W ) |
||
baerlem3.s | |- .(+) = ( LSSum ` W ) |
||
baerlem3.n | |- N = ( LSpan ` W ) |
||
baerlem3.w | |- ( ph -> W e. LVec ) |
||
baerlem3.x | |- ( ph -> X e. V ) |
||
baerlem3.c | |- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
||
baerlem3.d | |- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
||
baerlem3.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
baerlem3.z | |- ( ph -> Z e. ( V \ { .0. } ) ) |
||
baerlem5a.p | |- .+ = ( +g ` W ) |
||
Assertion | baerlem5a | |- ( ph -> ( N ` { ( X .- ( Y .+ Z ) ) } ) = ( ( ( N ` { ( X .- Y ) } ) .(+) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) .(+) ( N ` { Y } ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baerlem3.v | |- V = ( Base ` W ) |
|
2 | baerlem3.m | |- .- = ( -g ` W ) |
|
3 | baerlem3.o | |- .0. = ( 0g ` W ) |
|
4 | baerlem3.s | |- .(+) = ( LSSum ` W ) |
|
5 | baerlem3.n | |- N = ( LSpan ` W ) |
|
6 | baerlem3.w | |- ( ph -> W e. LVec ) |
|
7 | baerlem3.x | |- ( ph -> X e. V ) |
|
8 | baerlem3.c | |- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
|
9 | baerlem3.d | |- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
|
10 | baerlem3.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
11 | baerlem3.z | |- ( ph -> Z e. ( V \ { .0. } ) ) |
|
12 | baerlem5a.p | |- .+ = ( +g ` W ) |
|
13 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
14 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
15 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
16 | eqid | |- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
|
17 | eqid | |- ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) |
|
18 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
19 | eqid | |- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
|
20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | baerlem5alem2 | |- ( ph -> ( N ` { ( X .- ( Y .+ Z ) ) } ) = ( ( ( N ` { ( X .- Y ) } ) .(+) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- Z ) } ) .(+) ( N ` { Y } ) ) ) ) |