| Step | Hyp | Ref | Expression | 
						
							| 1 |  | baerlem3.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | baerlem3.m |  |-  .- = ( -g ` W ) | 
						
							| 3 |  | baerlem3.o |  |-  .0. = ( 0g ` W ) | 
						
							| 4 |  | baerlem3.s |  |-  .(+) = ( LSSum ` W ) | 
						
							| 5 |  | baerlem3.n |  |-  N = ( LSpan ` W ) | 
						
							| 6 |  | baerlem3.w |  |-  ( ph -> W e. LVec ) | 
						
							| 7 |  | baerlem3.x |  |-  ( ph -> X e. V ) | 
						
							| 8 |  | baerlem3.c |  |-  ( ph -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 9 |  | baerlem3.d |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) | 
						
							| 10 |  | baerlem3.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 11 |  | baerlem3.z |  |-  ( ph -> Z e. ( V \ { .0. } ) ) | 
						
							| 12 |  | baerlem5a.p |  |-  .+ = ( +g ` W ) | 
						
							| 13 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 14 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 15 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 16 |  | eqid |  |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) | 
						
							| 17 |  | eqid |  |-  ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) | 
						
							| 18 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 19 |  | eqid |  |-  ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | baerlem5blem2 |  |-  ( ph -> ( N ` { ( Y .+ Z ) } ) = ( ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) .(+) ( N ` { X } ) ) ) ) |