| Step | Hyp | Ref | Expression | 
						
							| 1 |  | baerlem3.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | baerlem3.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 3 |  | baerlem3.o | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | baerlem3.s | ⊢  ⊕   =  ( LSSum ‘ 𝑊 ) | 
						
							| 5 |  | baerlem3.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 6 |  | baerlem3.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 7 |  | baerlem3.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 8 |  | baerlem3.c | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑍 } ) ) | 
						
							| 9 |  | baerlem3.d | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑍 } ) ) | 
						
							| 10 |  | baerlem3.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 11 |  | baerlem3.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 12 |  | baerlem5a.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 14 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 16 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) )  =  ( +g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 17 |  | eqid | ⊢ ( -g ‘ ( Scalar ‘ 𝑊 ) )  =  ( -g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 18 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 19 |  | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) )  =  ( invg ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | baerlem5blem2 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( 𝑌  +  𝑍 ) } )  =  ( ( ( 𝑁 ‘ { 𝑌 } )  ⊕  ( 𝑁 ‘ { 𝑍 } ) )  ∩  ( ( 𝑁 ‘ { ( 𝑋  −  ( 𝑌  +  𝑍 ) ) } )  ⊕  ( 𝑁 ‘ { 𝑋 } ) ) ) ) |