Metamath Proof Explorer


Theorem baerlem5a

Description: An equality that holds when X , Y , Z are independent (non-colinear) vectors. First equation of part (5) in Baer p. 46. (Contributed by NM, 10-Apr-2015)

Ref Expression
Hypotheses baerlem3.v V = Base W
baerlem3.m - ˙ = - W
baerlem3.o 0 ˙ = 0 W
baerlem3.s ˙ = LSSum W
baerlem3.n N = LSpan W
baerlem3.w φ W LVec
baerlem3.x φ X V
baerlem3.c φ ¬ X N Y Z
baerlem3.d φ N Y N Z
baerlem3.y φ Y V 0 ˙
baerlem3.z φ Z V 0 ˙
baerlem5a.p + ˙ = + W
Assertion baerlem5a φ N X - ˙ Y + ˙ Z = N X - ˙ Y ˙ N Z N X - ˙ Z ˙ N Y

Proof

Step Hyp Ref Expression
1 baerlem3.v V = Base W
2 baerlem3.m - ˙ = - W
3 baerlem3.o 0 ˙ = 0 W
4 baerlem3.s ˙ = LSSum W
5 baerlem3.n N = LSpan W
6 baerlem3.w φ W LVec
7 baerlem3.x φ X V
8 baerlem3.c φ ¬ X N Y Z
9 baerlem3.d φ N Y N Z
10 baerlem3.y φ Y V 0 ˙
11 baerlem3.z φ Z V 0 ˙
12 baerlem5a.p + ˙ = + W
13 eqid W = W
14 eqid Scalar W = Scalar W
15 eqid Base Scalar W = Base Scalar W
16 eqid + Scalar W = + Scalar W
17 eqid - Scalar W = - Scalar W
18 eqid 0 Scalar W = 0 Scalar W
19 eqid inv g Scalar W = inv g Scalar W
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 baerlem5alem2 φ N X - ˙ Y + ˙ Z = N X - ˙ Y ˙ N Z N X - ˙ Z ˙ N Y