Step |
Hyp |
Ref |
Expression |
1 |
|
baerlem3.v |
|
2 |
|
baerlem3.m |
|
3 |
|
baerlem3.o |
|
4 |
|
baerlem3.s |
|
5 |
|
baerlem3.n |
|
6 |
|
baerlem3.w |
|
7 |
|
baerlem3.x |
|
8 |
|
baerlem3.c |
|
9 |
|
baerlem3.d |
|
10 |
|
baerlem3.y |
|
11 |
|
baerlem3.z |
|
12 |
|
baerlem3.p |
|
13 |
|
baerlem3.t |
|
14 |
|
baerlem3.r |
|
15 |
|
baerlem3.b |
|
16 |
|
baerlem3.a |
|
17 |
|
baerlem3.l |
|
18 |
|
baerlem3.q |
|
19 |
|
baerlem3.i |
|
20 |
|
lveclmod |
|
21 |
6 20
|
syl |
|
22 |
|
lmodabl |
|
23 |
21 22
|
syl |
|
24 |
10
|
eldifad |
|
25 |
11
|
eldifad |
|
26 |
1 12 2 23 7 24 25
|
ablsubsub4 |
|
27 |
26
|
sneqd |
|
28 |
27
|
fveq2d |
|
29 |
1 2
|
lmodvsubcl |
|
30 |
21 7 24 29
|
syl3anc |
|
31 |
1 2 4 5
|
lspsntrim |
|
32 |
21 30 25 31
|
syl3anc |
|
33 |
28 32
|
eqsstrrd |
|
34 |
1 2 23 7 25 24
|
ablsub32 |
|
35 |
34 26
|
eqtrd |
|
36 |
35
|
sneqd |
|
37 |
36
|
fveq2d |
|
38 |
1 2
|
lmodvsubcl |
|
39 |
21 7 25 38
|
syl3anc |
|
40 |
1 2 4 5
|
lspsntrim |
|
41 |
21 39 24 40
|
syl3anc |
|
42 |
37 41
|
eqsstrrd |
|
43 |
33 42
|
ssind |
|
44 |
|
elin |
|
45 |
1 12 14 15 13 4 5 21 30 25
|
lsmspsn |
|
46 |
1 12 14 15 13 4 5 21 39 24
|
lsmspsn |
|
47 |
45 46
|
anbi12d |
|
48 |
44 47
|
syl5bb |
|
49 |
|
simp11 |
|
50 |
49 6
|
syl |
|
51 |
49 7
|
syl |
|
52 |
49 8
|
syl |
|
53 |
49 9
|
syl |
|
54 |
49 10
|
syl |
|
55 |
49 11
|
syl |
|
56 |
|
simp12l |
|
57 |
|
simp12r |
|
58 |
|
simp2l |
|
59 |
|
simp2r |
|
60 |
|
simp13 |
|
61 |
|
simp3 |
|
62 |
1 2 3 4 5 50 51 52 53 54 55 12 13 14 15 16 17 18 19 56 57 58 59 60 61
|
baerlem5alem1 |
|
63 |
49 21
|
syl |
|
64 |
1 12
|
lmodvacl |
|
65 |
21 24 25 64
|
syl3anc |
|
66 |
1 2
|
lmodvsubcl |
|
67 |
21 7 65 66
|
syl3anc |
|
68 |
49 67
|
syl |
|
69 |
1 13 14 15 5 63 56 68
|
lspsneli |
|
70 |
62 69
|
eqeltrd |
|
71 |
70
|
3exp |
|
72 |
71
|
rexlimdvv |
|
73 |
72
|
3exp |
|
74 |
73
|
rexlimdvv |
|
75 |
74
|
impd |
|
76 |
48 75
|
sylbid |
|
77 |
76
|
ssrdv |
|
78 |
43 77
|
eqssd |
|