Metamath Proof Explorer


Theorem lspsntrim

Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypotheses lspsntrim.v V=BaseW
lspsntrim.s -˙=-W
lspsntrim.p ˙=LSSumW
lspsntrim.n N=LSpanW
Assertion lspsntrim WLModXVYVNX-˙YNX˙NY

Proof

Step Hyp Ref Expression
1 lspsntrim.v V=BaseW
2 lspsntrim.s -˙=-W
3 lspsntrim.p ˙=LSSumW
4 lspsntrim.n N=LSpanW
5 eqid invgW=invgW
6 1 5 lmodvnegcl WLModYVinvgWYV
7 6 3adant2 WLModXVYVinvgWYV
8 eqid +W=+W
9 1 8 4 3 lspsntri WLModXVinvgWYVNX+WinvgWYNX˙NinvgWY
10 7 9 syld3an3 WLModXVYVNX+WinvgWYNX˙NinvgWY
11 1 8 5 2 grpsubval XVYVX-˙Y=X+WinvgWY
12 11 sneqd XVYVX-˙Y=X+WinvgWY
13 12 fveq2d XVYVNX-˙Y=NX+WinvgWY
14 13 3adant1 WLModXVYVNX-˙Y=NX+WinvgWY
15 1 5 4 lspsnneg WLModYVNinvgWY=NY
16 15 3adant2 WLModXVYVNinvgWY=NY
17 16 eqcomd WLModXVYVNY=NinvgWY
18 17 oveq2d WLModXVYVNX˙NY=NX˙NinvgWY
19 10 14 18 3sstr4d WLModXVYVNX-˙YNX˙NY