Metamath Proof Explorer


Theorem lspsntri

Description: Triangle-type inequality for span of a singleton. (Contributed by NM, 24-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypotheses lspsntri.v V=BaseW
lspsntri.a +˙=+W
lspsntri.n N=LSpanW
lspsntri.p ˙=LSSumW
Assertion lspsntri WLModXVYVNX+˙YNX˙NY

Proof

Step Hyp Ref Expression
1 lspsntri.v V=BaseW
2 lspsntri.a +˙=+W
3 lspsntri.n N=LSpanW
4 lspsntri.p ˙=LSSumW
5 1 2 3 lspvadd WLModXVYVNX+˙YNXY
6 df-pr XY=XY
7 6 fveq2i NXY=NXY
8 5 7 sseqtrdi WLModXVYVNX+˙YNXY
9 simp1 WLModXVYVWLMod
10 simp2 WLModXVYVXV
11 10 snssd WLModXVYVXV
12 simp3 WLModXVYVYV
13 12 snssd WLModXVYVYV
14 1 3 4 lsmsp2 WLModXVYVNX˙NY=NXY
15 9 11 13 14 syl3anc WLModXVYVNX˙NY=NXY
16 8 15 sseqtrrd WLModXVYVNX+˙YNX˙NY