Metamath Proof Explorer


Theorem lspvadd

Description: The span of a vector sum is included in the span of its arguments. (Contributed by NM, 22-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypotheses lspvadd.v V=BaseW
lspvadd.a +˙=+W
lspvadd.n N=LSpanW
Assertion lspvadd WLModXVYVNX+˙YNXY

Proof

Step Hyp Ref Expression
1 lspvadd.v V=BaseW
2 lspvadd.a +˙=+W
3 lspvadd.n N=LSpanW
4 eqid LSubSpW=LSubSpW
5 simp1 WLModXVYVWLMod
6 prssi XVYVXYV
7 6 3adant1 WLModXVYVXYV
8 1 4 3 lspcl WLModXYVNXYLSubSpW
9 5 7 8 syl2anc WLModXVYVNXYLSubSpW
10 1 3 lspssid WLModXYVXYNXY
11 5 7 10 syl2anc WLModXVYVXYNXY
12 prssg XVYVXNXYYNXYXYNXY
13 12 3adant1 WLModXVYVXNXYYNXYXYNXY
14 11 13 mpbird WLModXVYVXNXYYNXY
15 2 4 lssvacl WLModNXYLSubSpWXNXYYNXYX+˙YNXY
16 5 9 14 15 syl21anc WLModXVYVX+˙YNXY
17 4 3 5 9 16 lspsnel5a WLModXVYVNX+˙YNXY