| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspvadd.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspvadd.a |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lspvadd.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 5 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 6 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 7 |
6
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 8 |
1 4 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 |
1 3
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 11 |
5 7 10
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 12 |
|
prssg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 13 |
12
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 14 |
11 13
|
mpbird |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 15 |
2 4
|
lssvacl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 16 |
5 9 14 15
|
syl21anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 17 |
4 3 5 9 16
|
ellspsn5 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |