Step |
Hyp |
Ref |
Expression |
1 |
|
lspvadd.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspvadd.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lspvadd.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
5 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
6 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
8 |
1 4 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
10 |
1 3
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
11 |
5 7 10
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
12 |
|
prssg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
14 |
11 13
|
mpbird |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
15 |
2 4
|
lssvacl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
16 |
5 9 14 15
|
syl21anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
17 |
4 3 5 9 16
|
lspsnel5a |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |