Metamath Proof Explorer


Theorem lspsnel5a

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015)

Ref Expression
Hypotheses lspsnel5a.s S=LSubSpW
lspsnel5a.n N=LSpanW
lspsnel5a.w φWLMod
lspsnel5a.a φUS
lspsnel5a.x φXU
Assertion lspsnel5a φNXU

Proof

Step Hyp Ref Expression
1 lspsnel5a.s S=LSubSpW
2 lspsnel5a.n N=LSpanW
3 lspsnel5a.w φWLMod
4 lspsnel5a.a φUS
5 lspsnel5a.x φXU
6 eqid BaseW=BaseW
7 6 1 lssel USXUXBaseW
8 4 5 7 syl2anc φXBaseW
9 6 1 2 3 4 8 lspsnel5 φXUNXU
10 5 9 mpbid φNXU