Description: Subspace sum of spans of subsets is the span of their union. ( spanuni analog.) (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmsp2.v | |
|
lsmsp2.n | |
||
lsmsp2.p | |
||
Assertion | lsmsp2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsp2.v | |
|
2 | lsmsp2.n | |
|
3 | lsmsp2.p | |
|
4 | simp1 | |
|
5 | eqid | |
|
6 | 1 5 2 | lspcl | |
7 | 6 | 3adant3 | |
8 | 1 5 2 | lspcl | |
9 | 8 | 3adant2 | |
10 | 5 2 3 | lsmsp | |
11 | 4 7 9 10 | syl3anc | |
12 | 1 2 | lspun | |
13 | 11 12 | eqtr4d | |