Metamath Proof Explorer


Theorem lsmsp2

Description: Subspace sum of spans of subsets is the span of their union. ( spanuni analog.) (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypotheses lsmsp2.v V=BaseW
lsmsp2.n N=LSpanW
lsmsp2.p ˙=LSSumW
Assertion lsmsp2 WLModTVUVNT˙NU=NTU

Proof

Step Hyp Ref Expression
1 lsmsp2.v V=BaseW
2 lsmsp2.n N=LSpanW
3 lsmsp2.p ˙=LSSumW
4 simp1 WLModTVUVWLMod
5 eqid LSubSpW=LSubSpW
6 1 5 2 lspcl WLModTVNTLSubSpW
7 6 3adant3 WLModTVUVNTLSubSpW
8 1 5 2 lspcl WLModUVNULSubSpW
9 8 3adant2 WLModTVUVNULSubSpW
10 5 2 3 lsmsp WLModNTLSubSpWNULSubSpWNT˙NU=NNTNU
11 4 7 9 10 syl3anc WLModTVUVNT˙NU=NNTNU
12 1 2 lspun WLModTVUVNTU=NNTNU
13 11 12 eqtr4d WLModTVUVNT˙NU=NTU