Metamath Proof Explorer


Theorem lspun

Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v V = Base W
lspss.n N = LSpan W
Assertion lspun W LMod T V U V N T U = N N T N U

Proof

Step Hyp Ref Expression
1 lspss.v V = Base W
2 lspss.n N = LSpan W
3 simp1 W LMod T V U V W LMod
4 simp2 W LMod T V U V T V
5 simp3 W LMod T V U V U V
6 4 5 unssd W LMod T V U V T U V
7 ssun1 T T U
8 7 a1i W LMod T V U V T T U
9 1 2 lspss W LMod T U V T T U N T N T U
10 3 6 8 9 syl3anc W LMod T V U V N T N T U
11 ssun2 U T U
12 11 a1i W LMod T V U V U T U
13 1 2 lspss W LMod T U V U T U N U N T U
14 3 6 12 13 syl3anc W LMod T V U V N U N T U
15 10 14 unssd W LMod T V U V N T N U N T U
16 1 2 lspssv W LMod T U V N T U V
17 3 6 16 syl2anc W LMod T V U V N T U V
18 15 17 sstrd W LMod T V U V N T N U V
19 1 2 lspssid W LMod T V T N T
20 3 4 19 syl2anc W LMod T V U V T N T
21 1 2 lspssid W LMod U V U N U
22 unss12 T N T U N U T U N T N U
23 20 21 22 3imp3i2an W LMod T V U V T U N T N U
24 1 2 lspss W LMod N T N U V T U N T N U N T U N N T N U
25 3 18 23 24 syl3anc W LMod T V U V N T U N N T N U
26 1 2 lspss W LMod N T U V N T N U N T U N N T N U N N T U
27 3 17 15 26 syl3anc W LMod T V U V N N T N U N N T U
28 1 2 lspidm W LMod T U V N N T U = N T U
29 3 6 28 syl2anc W LMod T V U V N N T U = N T U
30 27 29 sseqtrd W LMod T V U V N N T N U N T U
31 25 30 eqssd W LMod T V U V N T U = N N T N U