Metamath Proof Explorer


Theorem lspssp

Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014)

Ref Expression
Hypotheses lspssp.s S=LSubSpW
lspssp.n N=LSpanW
Assertion lspssp WLModUSTUNTU

Proof

Step Hyp Ref Expression
1 lspssp.s S=LSubSpW
2 lspssp.n N=LSpanW
3 eqid BaseW=BaseW
4 3 1 lssss USUBaseW
5 3 2 lspss WLModUBaseWTUNTNU
6 4 5 syl3an2 WLModUSTUNTNU
7 1 2 lspid WLModUSNU=U
8 7 3adant3 WLModUSTUNU=U
9 6 8 sseqtrd WLModUSTUNTU