| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspssp.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lspssp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 4 |
3 1
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 5 |
3 2
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |
| 6 |
4 5
|
syl3an2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |
| 7 |
1 2
|
lspid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ 𝑈 ) = 𝑈 ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑈 ) = 𝑈 ) |
| 9 |
6 8
|
sseqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑇 ) ⊆ 𝑈 ) |