Metamath Proof Explorer


Theorem mrclsp

Description: Moore closure generalizes module span. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses mrclsp.u 𝑈 = ( LSubSp ‘ 𝑊 )
mrclsp.k 𝐾 = ( LSpan ‘ 𝑊 )
mrclsp.f 𝐹 = ( mrCls ‘ 𝑈 )
Assertion mrclsp ( 𝑊 ∈ LMod → 𝐾 = 𝐹 )

Proof

Step Hyp Ref Expression
1 mrclsp.u 𝑈 = ( LSubSp ‘ 𝑊 )
2 mrclsp.k 𝐾 = ( LSpan ‘ 𝑊 )
3 mrclsp.f 𝐹 = ( mrCls ‘ 𝑈 )
4 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
5 4 1 2 lspfval ( 𝑊 ∈ LMod → 𝐾 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ { 𝑏𝑈𝑎𝑏 } ) )
6 4 1 lssmre ( 𝑊 ∈ LMod → 𝑈 ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) )
7 3 mrcfval ( 𝑈 ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) → 𝐹 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ { 𝑏𝑈𝑎𝑏 } ) )
8 6 7 syl ( 𝑊 ∈ LMod → 𝐹 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ { 𝑏𝑈𝑎𝑏 } ) )
9 5 8 eqtr4d ( 𝑊 ∈ LMod → 𝐾 = 𝐹 )