Step |
Hyp |
Ref |
Expression |
1 |
|
mrclsp.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑊 ) |
2 |
|
mrclsp.k |
⊢ 𝐾 = ( LSpan ‘ 𝑊 ) |
3 |
|
mrclsp.f |
⊢ 𝐹 = ( mrCls ‘ 𝑈 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
5 |
4 1 2
|
lspfval |
⊢ ( 𝑊 ∈ LMod → 𝐾 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ ∩ { 𝑏 ∈ 𝑈 ∣ 𝑎 ⊆ 𝑏 } ) ) |
6 |
4 1
|
lssmre |
⊢ ( 𝑊 ∈ LMod → 𝑈 ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) ) |
7 |
3
|
mrcfval |
⊢ ( 𝑈 ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) → 𝐹 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ ∩ { 𝑏 ∈ 𝑈 ∣ 𝑎 ⊆ 𝑏 } ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑊 ∈ LMod → 𝐹 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ ∩ { 𝑏 ∈ 𝑈 ∣ 𝑎 ⊆ 𝑏 } ) ) |
9 |
5 8
|
eqtr4d |
⊢ ( 𝑊 ∈ LMod → 𝐾 = 𝐹 ) |