Metamath Proof Explorer


Theorem lspid

Description: The span of a subspace is itself. ( spanid analog.) (Contributed by NM, 15-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspid.s S = LSubSp W
lspid.n N = LSpan W
Assertion lspid W LMod U S N U = U

Proof

Step Hyp Ref Expression
1 lspid.s S = LSubSp W
2 lspid.n N = LSpan W
3 eqid Base W = Base W
4 3 1 lssss U S U Base W
5 3 1 2 lspval W LMod U Base W N U = t S | U t
6 4 5 sylan2 W LMod U S N U = t S | U t
7 intmin U S t S | U t = U
8 7 adantl W LMod U S t S | U t = U
9 6 8 eqtrd W LMod U S N U = U