Metamath Proof Explorer


Theorem lspid

Description: The span of a subspace is itself. ( spanid analog.) (Contributed by NM, 15-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspid.s S=LSubSpW
lspid.n N=LSpanW
Assertion lspid WLModUSNU=U

Proof

Step Hyp Ref Expression
1 lspid.s S=LSubSpW
2 lspid.n N=LSpanW
3 eqid BaseW=BaseW
4 3 1 lssss USUBaseW
5 3 1 2 lspval WLModUBaseWNU=tS|Ut
6 4 5 sylan2 WLModUSNU=tS|Ut
7 intmin UStS|Ut=U
8 7 adantl WLModUStS|Ut=U
9 6 8 eqtrd WLModUSNU=U