Metamath Proof Explorer


Theorem lspssv

Description: A span is a set of vectors. (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v V = Base W
lspss.n N = LSpan W
Assertion lspssv W LMod U V N U V

Proof

Step Hyp Ref Expression
1 lspss.v V = Base W
2 lspss.n N = LSpan W
3 eqid LSubSp W = LSubSp W
4 1 3 2 lspcl W LMod U V N U LSubSp W
5 1 3 lssss N U LSubSp W N U V
6 4 5 syl W LMod U V N U V