Description: A span is a set of vectors. (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspss.v | |- V = ( Base ` W ) |
|
lspss.n | |- N = ( LSpan ` W ) |
||
Assertion | lspssv | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) C_ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspss.v | |- V = ( Base ` W ) |
|
2 | lspss.n | |- N = ( LSpan ` W ) |
|
3 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
4 | 1 3 2 | lspcl | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. ( LSubSp ` W ) ) |
5 | 1 3 | lssss | |- ( ( N ` U ) e. ( LSubSp ` W ) -> ( N ` U ) C_ V ) |
6 | 4 5 | syl | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) C_ V ) |