Metamath Proof Explorer


Theorem lspssv

Description: A span is a set of vectors. (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v
|- V = ( Base ` W )
lspss.n
|- N = ( LSpan ` W )
Assertion lspssv
|- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) C_ V )

Proof

Step Hyp Ref Expression
1 lspss.v
 |-  V = ( Base ` W )
2 lspss.n
 |-  N = ( LSpan ` W )
3 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
4 1 3 2 lspcl
 |-  ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. ( LSubSp ` W ) )
5 1 3 lssss
 |-  ( ( N ` U ) e. ( LSubSp ` W ) -> ( N ` U ) C_ V )
6 4 5 syl
 |-  ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) C_ V )