Step |
Hyp |
Ref |
Expression |
1 |
|
lspss.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspss.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) |
4 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑇 ⊆ 𝑉 ) |
5 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ 𝑉 ) |
6 |
4 5
|
unssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ) |
7 |
|
ssun1 |
⊢ 𝑇 ⊆ ( 𝑇 ∪ 𝑈 ) |
8 |
7
|
a1i |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑇 ⊆ ( 𝑇 ∪ 𝑈 ) ) |
9 |
1 2
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ∧ 𝑇 ⊆ ( 𝑇 ∪ 𝑈 ) ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
10 |
3 6 8 9
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
11 |
|
ssun2 |
⊢ 𝑈 ⊆ ( 𝑇 ∪ 𝑈 ) |
12 |
11
|
a1i |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝑇 ∪ 𝑈 ) ) |
13 |
1 2
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ∧ 𝑈 ⊆ ( 𝑇 ∪ 𝑈 ) ) → ( 𝑁 ‘ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
14 |
3 6 12 13
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
15 |
10 14
|
unssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
16 |
1 2
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ 𝑉 ) |
17 |
3 6 16
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ 𝑉 ) |
18 |
15 17
|
sstrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ⊆ 𝑉 ) |
19 |
1 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
20 |
3 4 19
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
21 |
1 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
22 |
|
unss12 |
⊢ ( ( 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) |
23 |
20 21 22
|
3imp3i2an |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) |
24 |
1 2
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ⊆ 𝑉 ∧ ( 𝑇 ∪ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
25 |
3 18 23 24
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
26 |
1 2
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ 𝑉 ∧ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ⊆ ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ) |
27 |
3 17 15 26
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ⊆ ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ) |
28 |
1 2
|
lspidm |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
29 |
3 6 28
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
30 |
27 29
|
sseqtrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
31 |
25 30
|
eqssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |