Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsp2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsmsp2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lsmsp2.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
4 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) |
5 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
6 |
1 5 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
8 |
1 5 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
9 |
8
|
3adant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
10 |
5 2 3
|
lsmsp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
11 |
4 7 9 10
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
12 |
1 2
|
lspun |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
13 |
11 12
|
eqtr4d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |