| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsp.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 2 |
|
lsmsp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
lsmsp.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 6 |
5 1
|
lssss |
⊢ ( 𝑇 ∈ 𝑆 → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 8 |
5 1
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 10 |
7 9
|
unssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) |
| 11 |
5 2
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 12 |
4 10 11
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 13 |
12
|
unssad |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 14 |
12
|
unssbd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 15 |
1
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 17 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ∈ 𝑆 ) |
| 18 |
16 17
|
sseldd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 19 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ 𝑆 ) |
| 20 |
16 19
|
sseldd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 21 |
5 1 2
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∈ 𝑆 ) |
| 22 |
4 10 21
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∈ 𝑆 ) |
| 23 |
16 22
|
sseldd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 24 |
3
|
lsmlub |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑇 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∧ 𝑈 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ↔ ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ) |
| 25 |
18 20 23 24
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑇 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ∧ 𝑈 ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ↔ ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ) |
| 26 |
13 14 25
|
mpbi2and |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 27 |
1 3
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |
| 28 |
3
|
lsmunss |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 29 |
18 20 28
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 30 |
1 2
|
lspssp |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ∧ ( 𝑇 ∪ 𝑈 ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 31 |
4 27 29 30
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 32 |
26 31
|
eqssd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |