Metamath Proof Explorer


Theorem lsmsp

Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypotheses lsmsp.s S = LSubSp W
lsmsp.n N = LSpan W
lsmsp.p ˙ = LSSum W
Assertion lsmsp W LMod T S U S T ˙ U = N T U

Proof

Step Hyp Ref Expression
1 lsmsp.s S = LSubSp W
2 lsmsp.n N = LSpan W
3 lsmsp.p ˙ = LSSum W
4 simp1 W LMod T S U S W LMod
5 eqid Base W = Base W
6 5 1 lssss T S T Base W
7 6 3ad2ant2 W LMod T S U S T Base W
8 5 1 lssss U S U Base W
9 8 3ad2ant3 W LMod T S U S U Base W
10 7 9 unssd W LMod T S U S T U Base W
11 5 2 lspssid W LMod T U Base W T U N T U
12 4 10 11 syl2anc W LMod T S U S T U N T U
13 12 unssad W LMod T S U S T N T U
14 12 unssbd W LMod T S U S U N T U
15 1 lsssssubg W LMod S SubGrp W
16 15 3ad2ant1 W LMod T S U S S SubGrp W
17 simp2 W LMod T S U S T S
18 16 17 sseldd W LMod T S U S T SubGrp W
19 simp3 W LMod T S U S U S
20 16 19 sseldd W LMod T S U S U SubGrp W
21 5 1 2 lspcl W LMod T U Base W N T U S
22 4 10 21 syl2anc W LMod T S U S N T U S
23 16 22 sseldd W LMod T S U S N T U SubGrp W
24 3 lsmlub T SubGrp W U SubGrp W N T U SubGrp W T N T U U N T U T ˙ U N T U
25 18 20 23 24 syl3anc W LMod T S U S T N T U U N T U T ˙ U N T U
26 13 14 25 mpbi2and W LMod T S U S T ˙ U N T U
27 1 3 lsmcl W LMod T S U S T ˙ U S
28 3 lsmunss T SubGrp W U SubGrp W T U T ˙ U
29 18 20 28 syl2anc W LMod T S U S T U T ˙ U
30 1 2 lspssp W LMod T ˙ U S T U T ˙ U N T U T ˙ U
31 4 27 29 30 syl3anc W LMod T S U S N T U T ˙ U
32 26 31 eqssd W LMod T S U S T ˙ U = N T U