Description: Subspace sum in terms of span. (Contributed by NM, 6-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmsp.s | |
|
lsmsp.n | |
||
lsmsp.p | |
||
Assertion | lsmsp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsp.s | |
|
2 | lsmsp.n | |
|
3 | lsmsp.p | |
|
4 | simp1 | |
|
5 | eqid | |
|
6 | 5 1 | lssss | |
7 | 6 | 3ad2ant2 | |
8 | 5 1 | lssss | |
9 | 8 | 3ad2ant3 | |
10 | 7 9 | unssd | |
11 | 5 2 | lspssid | |
12 | 4 10 11 | syl2anc | |
13 | 12 | unssad | |
14 | 12 | unssbd | |
15 | 1 | lsssssubg | |
16 | 15 | 3ad2ant1 | |
17 | simp2 | |
|
18 | 16 17 | sseldd | |
19 | simp3 | |
|
20 | 16 19 | sseldd | |
21 | 5 1 2 | lspcl | |
22 | 4 10 21 | syl2anc | |
23 | 16 22 | sseldd | |
24 | 3 | lsmlub | |
25 | 18 20 23 24 | syl3anc | |
26 | 13 14 25 | mpbi2and | |
27 | 1 3 | lsmcl | |
28 | 3 | lsmunss | |
29 | 18 20 28 | syl2anc | |
30 | 1 2 | lspssp | |
31 | 4 27 29 30 | syl3anc | |
32 | 26 31 | eqssd | |