Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsp.s |
|
2 |
|
lsmsp.n |
|
3 |
|
lsmsp.p |
|
4 |
|
simp1 |
|
5 |
|
eqid |
|
6 |
5 1
|
lssss |
|
7 |
6
|
3ad2ant2 |
|
8 |
5 1
|
lssss |
|
9 |
8
|
3ad2ant3 |
|
10 |
7 9
|
unssd |
|
11 |
5 2
|
lspssid |
|
12 |
4 10 11
|
syl2anc |
|
13 |
12
|
unssad |
|
14 |
12
|
unssbd |
|
15 |
1
|
lsssssubg |
|
16 |
15
|
3ad2ant1 |
|
17 |
|
simp2 |
|
18 |
16 17
|
sseldd |
|
19 |
|
simp3 |
|
20 |
16 19
|
sseldd |
|
21 |
5 1 2
|
lspcl |
|
22 |
4 10 21
|
syl2anc |
|
23 |
16 22
|
sseldd |
|
24 |
3
|
lsmlub |
|
25 |
18 20 23 24
|
syl3anc |
|
26 |
13 14 25
|
mpbi2and |
|
27 |
1 3
|
lsmcl |
|
28 |
3
|
lsmunss |
|
29 |
18 20 28
|
syl2anc |
|
30 |
1 2
|
lspssp |
|
31 |
4 27 29 30
|
syl3anc |
|
32 |
26 31
|
eqssd |
|