Metamath Proof Explorer


Theorem lsmlub

Description: The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypothesis lsmub1.p ˙ = LSSum G
Assertion lsmlub S SubGrp G T SubGrp G U SubGrp G S U T U S ˙ T U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙ = LSSum G
2 simp3 S SubGrp G T SubGrp G U SubGrp G U SubGrp G
3 1 lsmless12 U SubGrp G U SubGrp G S U T U S ˙ T U ˙ U
4 3 ex U SubGrp G U SubGrp G S U T U S ˙ T U ˙ U
5 2 2 4 syl2anc S SubGrp G T SubGrp G U SubGrp G S U T U S ˙ T U ˙ U
6 1 lsmidm U SubGrp G U ˙ U = U
7 6 3ad2ant3 S SubGrp G T SubGrp G U SubGrp G U ˙ U = U
8 7 sseq2d S SubGrp G T SubGrp G U SubGrp G S ˙ T U ˙ U S ˙ T U
9 5 8 sylibd S SubGrp G T SubGrp G U SubGrp G S U T U S ˙ T U
10 1 lsmub1 S SubGrp G T SubGrp G S S ˙ T
11 10 3adant3 S SubGrp G T SubGrp G U SubGrp G S S ˙ T
12 sstr2 S S ˙ T S ˙ T U S U
13 11 12 syl S SubGrp G T SubGrp G U SubGrp G S ˙ T U S U
14 1 lsmub2 S SubGrp G T SubGrp G T S ˙ T
15 14 3adant3 S SubGrp G T SubGrp G U SubGrp G T S ˙ T
16 sstr2 T S ˙ T S ˙ T U T U
17 15 16 syl S SubGrp G T SubGrp G U SubGrp G S ˙ T U T U
18 13 17 jcad S SubGrp G T SubGrp G U SubGrp G S ˙ T U S U T U
19 9 18 impbid S SubGrp G T SubGrp G U SubGrp G S U T U S ˙ T U