Metamath Proof Explorer


Theorem lsmless12

Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmless12 SSubGrpGUSubGrpGRSTUR˙TS˙U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 subgrcl SSubGrpGGGrp
3 2 ad2antrr SSubGrpGUSubGrpGRSTUGGrp
4 eqid BaseG=BaseG
5 4 subgss SSubGrpGSBaseG
6 5 ad2antrr SSubGrpGUSubGrpGRSTUSBaseG
7 simprr SSubGrpGUSubGrpGRSTUTU
8 4 subgss USubGrpGUBaseG
9 8 ad2antlr SSubGrpGUSubGrpGRSTUUBaseG
10 7 9 sstrd SSubGrpGUSubGrpGRSTUTBaseG
11 simprl SSubGrpGUSubGrpGRSTURS
12 4 1 lsmless1x GGrpSBaseGTBaseGRSR˙TS˙T
13 3 6 10 11 12 syl31anc SSubGrpGUSubGrpGRSTUR˙TS˙T
14 simpll SSubGrpGUSubGrpGRSTUSSubGrpG
15 simplr SSubGrpGUSubGrpGRSTUUSubGrpG
16 1 lsmless2 SSubGrpGUSubGrpGTUS˙TS˙U
17 14 15 7 16 syl3anc SSubGrpGUSubGrpGRSTUS˙TS˙U
18 13 17 sstrd SSubGrpGUSubGrpGRSTUR˙TS˙U