Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsmub1.p | |
|
Assertion | lsmless12 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmub1.p | |
|
2 | subgrcl | |
|
3 | 2 | ad2antrr | |
4 | eqid | |
|
5 | 4 | subgss | |
6 | 5 | ad2antrr | |
7 | simprr | |
|
8 | 4 | subgss | |
9 | 8 | ad2antlr | |
10 | 7 9 | sstrd | |
11 | simprl | |
|
12 | 4 1 | lsmless1x | |
13 | 3 6 10 11 12 | syl31anc | |
14 | simpll | |
|
15 | simplr | |
|
16 | 1 | lsmless2 | |
17 | 14 15 7 16 | syl3anc | |
18 | 13 17 | sstrd | |