| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmub1.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 2 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 3 |
2
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝐺 ∈ Grp ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 5 |
4
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 |
|
simprr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑇 ⊆ 𝑈 ) |
| 8 |
4
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 |
8
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 |
7 9
|
sstrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑅 ⊆ 𝑆 ) |
| 12 |
4 1
|
lsmless1x |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑅 ⊆ 𝑆 ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 13 |
3 6 10 11 12
|
syl31anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 |
1
|
lsmless2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 17 |
14 15 7 16
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 18 |
13 17
|
sstrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |