Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
2 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝐺 ∈ Grp ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
4
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
7 |
|
simprr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑇 ⊆ 𝑈 ) |
8 |
4
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
10 |
7 9
|
sstrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
11 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑅 ⊆ 𝑆 ) |
12 |
4 1
|
lsmless1x |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑅 ⊆ 𝑆 ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
13 |
3 6 10 11 12
|
syl31anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
15 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
16 |
1
|
lsmless2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
17 |
14 15 7 16
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
18 |
13 17
|
sstrd |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |