Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmless2.v | |
|
lsmless2.s | |
||
Assertion | lsmless1x | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmless2.v | |
|
2 | lsmless2.s | |
|
3 | ssrexv | |
|
4 | 3 | adantl | |
5 | simpl1 | |
|
6 | simpr | |
|
7 | simpl2 | |
|
8 | 6 7 | sstrd | |
9 | simpl3 | |
|
10 | eqid | |
|
11 | 1 10 2 | lsmelvalx | |
12 | 5 8 9 11 | syl3anc | |
13 | 1 10 2 | lsmelvalx | |
14 | 13 | adantr | |
15 | 4 12 14 | 3imtr4d | |
16 | 15 | ssrdv | |