Metamath Proof Explorer


Theorem lsmless1x

Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B=BaseG
lsmless2.s ˙=LSSumG
Assertion lsmless1x GVTBUBRTR˙UT˙U

Proof

Step Hyp Ref Expression
1 lsmless2.v B=BaseG
2 lsmless2.s ˙=LSSumG
3 ssrexv RTyRzUx=y+GzyTzUx=y+Gz
4 3 adantl GVTBUBRTyRzUx=y+GzyTzUx=y+Gz
5 simpl1 GVTBUBRTGV
6 simpr GVTBUBRTRT
7 simpl2 GVTBUBRTTB
8 6 7 sstrd GVTBUBRTRB
9 simpl3 GVTBUBRTUB
10 eqid +G=+G
11 1 10 2 lsmelvalx GVRBUBxR˙UyRzUx=y+Gz
12 5 8 9 11 syl3anc GVTBUBRTxR˙UyRzUx=y+Gz
13 1 10 2 lsmelvalx GVTBUBxT˙UyTzUx=y+Gz
14 13 adantr GVTBUBRTxT˙UyTzUx=y+Gz
15 4 12 14 3imtr4d GVTBUBRTxR˙UxT˙U
16 15 ssrdv GVTBUBRTR˙UT˙U