Metamath Proof Explorer


Theorem lsmless2x

Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B=BaseG
lsmless2.s ˙=LSSumG
Assertion lsmless2x GVRBUBTUR˙TR˙U

Proof

Step Hyp Ref Expression
1 lsmless2.v B=BaseG
2 lsmless2.s ˙=LSSumG
3 ssrexv TUzTx=y+GzzUx=y+Gz
4 3 reximdv TUyRzTx=y+GzyRzUx=y+Gz
5 4 adantl GVRBUBTUyRzTx=y+GzyRzUx=y+Gz
6 simpl1 GVRBUBTUGV
7 simpl2 GVRBUBTURB
8 simpr GVRBUBTUTU
9 simpl3 GVRBUBTUUB
10 8 9 sstrd GVRBUBTUTB
11 eqid +G=+G
12 1 11 2 lsmelvalx GVRBTBxR˙TyRzTx=y+Gz
13 6 7 10 12 syl3anc GVRBUBTUxR˙TyRzTx=y+Gz
14 1 11 2 lsmelvalx GVRBUBxR˙UyRzUx=y+Gz
15 14 adantr GVRBUBTUxR˙UyRzUx=y+Gz
16 5 13 15 3imtr4d GVRBUBTUxR˙TxR˙U
17 16 ssrdv GVRBUBTUR˙TR˙U