Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmless2.v | |
|
lsmless2.s | |
||
Assertion | lsmless2x | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmless2.v | |
|
2 | lsmless2.s | |
|
3 | ssrexv | |
|
4 | 3 | reximdv | |
5 | 4 | adantl | |
6 | simpl1 | |
|
7 | simpl2 | |
|
8 | simpr | |
|
9 | simpl3 | |
|
10 | 8 9 | sstrd | |
11 | eqid | |
|
12 | 1 11 2 | lsmelvalx | |
13 | 6 7 10 12 | syl3anc | |
14 | 1 11 2 | lsmelvalx | |
15 | 14 | adantr | |
16 | 5 13 15 | 3imtr4d | |
17 | 16 | ssrdv | |