Metamath Proof Explorer


Theorem lsmelvalx

Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval . (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v B=BaseG
lsmfval.a +˙=+G
lsmfval.s ˙=LSSumG
Assertion lsmelvalx GVTBUBXT˙UyTzUX=y+˙z

Proof

Step Hyp Ref Expression
1 lsmfval.v B=BaseG
2 lsmfval.a +˙=+G
3 lsmfval.s ˙=LSSumG
4 1 2 3 lsmvalx GVTBUBT˙U=ranyT,zUy+˙z
5 4 eleq2d GVTBUBXT˙UXranyT,zUy+˙z
6 eqid yT,zUy+˙z=yT,zUy+˙z
7 ovex y+˙zV
8 6 7 elrnmpo XranyT,zUy+˙zyTzUX=y+˙z
9 5 8 bitrdi GVTBUBXT˙UyTzUX=y+˙z