Metamath Proof Explorer


Theorem lsmelvalix

Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v B=BaseG
lsmfval.a +˙=+G
lsmfval.s ˙=LSSumG
Assertion lsmelvalix GVTBUBXTYUX+˙YT˙U

Proof

Step Hyp Ref Expression
1 lsmfval.v B=BaseG
2 lsmfval.a +˙=+G
3 lsmfval.s ˙=LSSumG
4 eqid X+˙Y=X+˙Y
5 rspceov XTYUX+˙Y=X+˙YxTyUX+˙Y=x+˙y
6 4 5 mp3an3 XTYUxTyUX+˙Y=x+˙y
7 1 2 3 lsmelvalx GVTBUBX+˙YT˙UxTyUX+˙Y=x+˙y
8 7 biimpar GVTBUBxTyUX+˙Y=x+˙yX+˙YT˙U
9 6 8 sylan2 GVTBUBXTYUX+˙YT˙U