Metamath Proof Explorer


Theorem elrnmpo

Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses rngop.1 F=xA,yBC
elrnmpo.1 CV
Assertion elrnmpo DranFxAyBD=C

Proof

Step Hyp Ref Expression
1 rngop.1 F=xA,yBC
2 elrnmpo.1 CV
3 1 rnmpo ranF=z|xAyBz=C
4 3 eleq2i DranFDz|xAyBz=C
5 eleq1 D=CDVCV
6 2 5 mpbiri D=CDV
7 6 rexlimivw yBD=CDV
8 7 rexlimivw xAyBD=CDV
9 eqeq1 z=Dz=CD=C
10 9 2rexbidv z=DxAyBz=CxAyBD=C
11 8 10 elab3 Dz|xAyBz=CxAyBD=C
12 4 11 bitri DranFxAyBD=C