Metamath Proof Explorer


Theorem elrnmpores

Description: Membership in the range of a restricted operation class abstraction. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypothesis rngop.1 F=xA,yBC
Assertion elrnmpores DVDranFRxAyBD=CxRy

Proof

Step Hyp Ref Expression
1 rngop.1 F=xA,yBC
2 eqeq1 z=Dz=CD=C
3 2 anbi1d z=Dz=CxRyD=CxRy
4 3 anbi2d z=DxAyBz=CxRyxAyBD=CxRy
5 4 2exbidv z=DxyxAyBz=CxRyxyxAyBD=CxRy
6 an12 pRp=xyxAyBz=Cp=xypRxAyBz=C
7 an12 pRxAyBz=CxAyBpRz=C
8 ancom z=CpRpRz=C
9 eleq1 p=xypRxyR
10 df-br xRyxyR
11 9 10 bitr4di p=xypRxRy
12 11 anbi2d p=xyz=CpRz=CxRy
13 8 12 bitr3id p=xypRz=Cz=CxRy
14 13 anbi2d p=xyxAyBpRz=CxAyBz=CxRy
15 7 14 bitrid p=xypRxAyBz=CxAyBz=CxRy
16 15 pm5.32i p=xypRxAyBz=Cp=xyxAyBz=CxRy
17 6 16 bitri pRp=xyxAyBz=Cp=xyxAyBz=CxRy
18 17 2exbii xypRp=xyxAyBz=Cxyp=xyxAyBz=CxRy
19 19.42vv xypRp=xyxAyBz=CpRxyp=xyxAyBz=C
20 18 19 bitr3i xyp=xyxAyBz=CxRypRxyp=xyxAyBz=C
21 20 opabbii pz|xyp=xyxAyBz=CxRy=pz|pRxyp=xyxAyBz=C
22 dfoprab2 xyz|xAyBz=CxRy=pz|xyp=xyxAyBz=CxRy
23 df-mpo xA,yBC=xyz|xAyBz=C
24 dfoprab2 xyz|xAyBz=C=pz|xyp=xyxAyBz=C
25 1 23 24 3eqtri F=pz|xyp=xyxAyBz=C
26 25 reseq1i FR=pz|xyp=xyxAyBz=CR
27 resopab pz|xyp=xyxAyBz=CR=pz|pRxyp=xyxAyBz=C
28 26 27 eqtri FR=pz|pRxyp=xyxAyBz=C
29 21 22 28 3eqtr4ri FR=xyz|xAyBz=CxRy
30 29 rneqi ranFR=ranxyz|xAyBz=CxRy
31 rnoprab ranxyz|xAyBz=CxRy=z|xyxAyBz=CxRy
32 30 31 eqtri ranFR=z|xyxAyBz=CxRy
33 5 32 elab2g DVDranFRxyxAyBD=CxRy
34 r2ex xAyBD=CxRyxyxAyBD=CxRy
35 33 34 bitr4di DVDranFRxAyBD=CxRy