Metamath Proof Explorer


Theorem rnmpo

Description: The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011)

Ref Expression
Hypothesis rngop.1 F=xA,yBC
Assertion rnmpo ranF=z|xAyBz=C

Proof

Step Hyp Ref Expression
1 rngop.1 F=xA,yBC
2 df-mpo xA,yBC=xyz|xAyBz=C
3 1 2 eqtri F=xyz|xAyBz=C
4 3 rneqi ranF=ranxyz|xAyBz=C
5 rnoprab2 ranxyz|xAyBz=C=z|xAyBz=C
6 4 5 eqtri ranF=z|xAyBz=C