Metamath Proof Explorer


Theorem rnoprab2

Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012)

Ref Expression
Assertion rnoprab2 ran x y z | x A y B φ = z | x A y B φ

Proof

Step Hyp Ref Expression
1 rnoprab ran x y z | x A y B φ = z | x y x A y B φ
2 r2ex x A y B φ x y x A y B φ
3 2 abbii z | x A y B φ = z | x y x A y B φ
4 1 3 eqtr4i ran x y z | x A y B φ = z | x A y B φ