Metamath Proof Explorer


Theorem lsmelval

Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelval.a +˙=+G
lsmelval.p ˙=LSSumG
Assertion lsmelval TSubGrpGUSubGrpGXT˙UyTzUX=y+˙z

Proof

Step Hyp Ref Expression
1 lsmelval.a +˙=+G
2 lsmelval.p ˙=LSSumG
3 subgrcl TSubGrpGGGrp
4 eqid BaseG=BaseG
5 4 subgss TSubGrpGTBaseG
6 4 subgss USubGrpGUBaseG
7 4 1 2 lsmelvalx GGrpTBaseGUBaseGXT˙UyTzUX=y+˙z
8 3 5 6 7 syl2an3an TSubGrpGUSubGrpGXT˙UyTzUX=y+˙z