Step |
Hyp |
Ref |
Expression |
1 |
|
lsmelval.a |
|- .+ = ( +g ` G ) |
2 |
|
lsmelval.p |
|- .(+) = ( LSSum ` G ) |
3 |
|
subgrcl |
|- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
4
|
subgss |
|- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
6 |
4
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
7 |
4 1 2
|
lsmelvalx |
|- ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) ) |
8 |
3 5 6 7
|
syl2an3an |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) ) |