Metamath Proof Explorer


Theorem lsmelval

Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelval.a
|- .+ = ( +g ` G )
lsmelval.p
|- .(+) = ( LSSum ` G )
Assertion lsmelval
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) )

Proof

Step Hyp Ref Expression
1 lsmelval.a
 |-  .+ = ( +g ` G )
2 lsmelval.p
 |-  .(+) = ( LSSum ` G )
3 subgrcl
 |-  ( T e. ( SubGrp ` G ) -> G e. Grp )
4 eqid
 |-  ( Base ` G ) = ( Base ` G )
5 4 subgss
 |-  ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) )
6 4 subgss
 |-  ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) )
7 4 1 2 lsmelvalx
 |-  ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) )
8 3 5 6 7 syl2an3an
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .+ z ) ) )