Metamath Proof Explorer


Theorem lsmelval

Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelval.a + = ( +g𝐺 )
lsmelval.p = ( LSSum ‘ 𝐺 )
Assertion lsmelval ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑋 ∈ ( 𝑇 𝑈 ) ↔ ∃ 𝑦𝑇𝑧𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 lsmelval.a + = ( +g𝐺 )
2 lsmelval.p = ( LSSum ‘ 𝐺 )
3 subgrcl ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
4 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
5 4 subgss ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) )
6 4 subgss ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) )
7 4 1 2 lsmelvalx ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑋 ∈ ( 𝑇 𝑈 ) ↔ ∃ 𝑦𝑇𝑧𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) )
8 3 5 6 7 syl2an3an ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑋 ∈ ( 𝑇 𝑈 ) ↔ ∃ 𝑦𝑇𝑧𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) )