Metamath Proof Explorer


Theorem lsmelvali

Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelval.a +˙=+G
lsmelval.p ˙=LSSumG
Assertion lsmelvali TSubGrpGUSubGrpGXTYUX+˙YT˙U

Proof

Step Hyp Ref Expression
1 lsmelval.a +˙=+G
2 lsmelval.p ˙=LSSumG
3 subgrcl TSubGrpGGGrp
4 3 adantr TSubGrpGUSubGrpGGGrp
5 eqid BaseG=BaseG
6 5 subgss TSubGrpGTBaseG
7 6 adantr TSubGrpGUSubGrpGTBaseG
8 5 subgss USubGrpGUBaseG
9 8 adantl TSubGrpGUSubGrpGUBaseG
10 4 7 9 3jca TSubGrpGUSubGrpGGGrpTBaseGUBaseG
11 5 1 2 lsmelvalix GGrpTBaseGUBaseGXTYUX+˙YT˙U
12 10 11 sylan TSubGrpGUSubGrpGXTYUX+˙YT˙U