Metamath Proof Explorer


Theorem lsmelvalm

Description: Subgroup sum membership analogue of lsmelval using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmelvalm.m -˙=-G
lsmelvalm.p ˙=LSSumG
lsmelvalm.t φTSubGrpG
lsmelvalm.u φUSubGrpG
Assertion lsmelvalm φXT˙UyTzUX=y-˙z

Proof

Step Hyp Ref Expression
1 lsmelvalm.m -˙=-G
2 lsmelvalm.p ˙=LSSumG
3 lsmelvalm.t φTSubGrpG
4 lsmelvalm.u φUSubGrpG
5 eqid +G=+G
6 5 2 lsmelval TSubGrpGUSubGrpGXT˙UyTxUX=y+Gx
7 3 4 6 syl2anc φXT˙UyTxUX=y+Gx
8 4 adantr φyTUSubGrpG
9 eqid invgG=invgG
10 9 subginvcl USubGrpGxUinvgGxU
11 8 10 sylan φyTxUinvgGxU
12 eqid BaseG=BaseG
13 subgrcl TSubGrpGGGrp
14 3 13 syl φGGrp
15 14 ad2antrr φyTxUGGrp
16 12 subgss TSubGrpGTBaseG
17 3 16 syl φTBaseG
18 17 sselda φyTyBaseG
19 18 adantr φyTxUyBaseG
20 12 subgss USubGrpGUBaseG
21 8 20 syl φyTUBaseG
22 21 sselda φyTxUxBaseG
23 12 5 1 9 15 19 22 grpsubinv φyTxUy-˙invgGx=y+Gx
24 23 eqcomd φyTxUy+Gx=y-˙invgGx
25 oveq2 z=invgGxy-˙z=y-˙invgGx
26 25 rspceeqv invgGxUy+Gx=y-˙invgGxzUy+Gx=y-˙z
27 11 24 26 syl2anc φyTxUzUy+Gx=y-˙z
28 eqeq1 X=y+GxX=y-˙zy+Gx=y-˙z
29 28 rexbidv X=y+GxzUX=y-˙zzUy+Gx=y-˙z
30 27 29 syl5ibrcom φyTxUX=y+GxzUX=y-˙z
31 30 rexlimdva φyTxUX=y+GxzUX=y-˙z
32 9 subginvcl USubGrpGzUinvgGzU
33 8 32 sylan φyTzUinvgGzU
34 18 adantr φyTzUyBaseG
35 21 sselda φyTzUzBaseG
36 12 5 9 1 grpsubval yBaseGzBaseGy-˙z=y+GinvgGz
37 34 35 36 syl2anc φyTzUy-˙z=y+GinvgGz
38 oveq2 x=invgGzy+Gx=y+GinvgGz
39 38 rspceeqv invgGzUy-˙z=y+GinvgGzxUy-˙z=y+Gx
40 33 37 39 syl2anc φyTzUxUy-˙z=y+Gx
41 eqeq1 X=y-˙zX=y+Gxy-˙z=y+Gx
42 41 rexbidv X=y-˙zxUX=y+GxxUy-˙z=y+Gx
43 40 42 syl5ibrcom φyTzUX=y-˙zxUX=y+Gx
44 43 rexlimdva φyTzUX=y-˙zxUX=y+Gx
45 31 44 impbid φyTxUX=y+GxzUX=y-˙z
46 45 rexbidva φyTxUX=y+GxyTzUX=y-˙z
47 7 46 bitrd φXT˙UyTzUX=y-˙z