Description: Subgroup sum membership analogue of lsmelval using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmelvalm.m | |
|
lsmelvalm.p | |
||
lsmelvalm.t | |
||
lsmelvalm.u | |
||
Assertion | lsmelvalm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmelvalm.m | |
|
2 | lsmelvalm.p | |
|
3 | lsmelvalm.t | |
|
4 | lsmelvalm.u | |
|
5 | eqid | |
|
6 | 5 2 | lsmelval | |
7 | 3 4 6 | syl2anc | |
8 | 4 | adantr | |
9 | eqid | |
|
10 | 9 | subginvcl | |
11 | 8 10 | sylan | |
12 | eqid | |
|
13 | subgrcl | |
|
14 | 3 13 | syl | |
15 | 14 | ad2antrr | |
16 | 12 | subgss | |
17 | 3 16 | syl | |
18 | 17 | sselda | |
19 | 18 | adantr | |
20 | 12 | subgss | |
21 | 8 20 | syl | |
22 | 21 | sselda | |
23 | 12 5 1 9 15 19 22 | grpsubinv | |
24 | 23 | eqcomd | |
25 | oveq2 | |
|
26 | 25 | rspceeqv | |
27 | 11 24 26 | syl2anc | |
28 | eqeq1 | |
|
29 | 28 | rexbidv | |
30 | 27 29 | syl5ibrcom | |
31 | 30 | rexlimdva | |
32 | 9 | subginvcl | |
33 | 8 32 | sylan | |
34 | 18 | adantr | |
35 | 21 | sselda | |
36 | 12 5 9 1 | grpsubval | |
37 | 34 35 36 | syl2anc | |
38 | oveq2 | |
|
39 | 38 | rspceeqv | |
40 | 33 37 39 | syl2anc | |
41 | eqeq1 | |
|
42 | 41 | rexbidv | |
43 | 40 42 | syl5ibrcom | |
44 | 43 | rexlimdva | |
45 | 31 44 | impbid | |
46 | 45 | rexbidva | |
47 | 7 46 | bitrd | |