Metamath Proof Explorer


Theorem lsmvalx

Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval . (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmfval.v B=BaseG
lsmfval.a +˙=+G
lsmfval.s ˙=LSSumG
Assertion lsmvalx GVTBUBT˙U=ranxT,yUx+˙y

Proof

Step Hyp Ref Expression
1 lsmfval.v B=BaseG
2 lsmfval.a +˙=+G
3 lsmfval.s ˙=LSSumG
4 1 2 3 lsmfval GV˙=t𝒫B,u𝒫Branxt,yux+˙y
5 4 oveqd GVT˙U=Tt𝒫B,u𝒫Branxt,yux+˙yU
6 1 fvexi BV
7 6 elpw2 T𝒫BTB
8 6 elpw2 U𝒫BUB
9 mpoexga T𝒫BU𝒫BxT,yUx+˙yV
10 rnexg xT,yUx+˙yVranxT,yUx+˙yV
11 9 10 syl T𝒫BU𝒫BranxT,yUx+˙yV
12 mpoeq12 t=Tu=Uxt,yux+˙y=xT,yUx+˙y
13 12 rneqd t=Tu=Uranxt,yux+˙y=ranxT,yUx+˙y
14 eqid t𝒫B,u𝒫Branxt,yux+˙y=t𝒫B,u𝒫Branxt,yux+˙y
15 13 14 ovmpoga T𝒫BU𝒫BranxT,yUx+˙yVTt𝒫B,u𝒫Branxt,yux+˙yU=ranxT,yUx+˙y
16 11 15 mpd3an3 T𝒫BU𝒫BTt𝒫B,u𝒫Branxt,yux+˙yU=ranxT,yUx+˙y
17 7 8 16 syl2anbr TBUBTt𝒫B,u𝒫Branxt,yux+˙yU=ranxT,yUx+˙y
18 5 17 sylan9eq GVTBUBT˙U=ranxT,yUx+˙y
19 18 3impb GVTBUBT˙U=ranxT,yUx+˙y