Metamath Proof Explorer


Theorem lsmval

Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmval.v B=BaseG
lsmval.a +˙=+G
lsmval.p ˙=LSSumG
Assertion lsmval TSubGrpGUSubGrpGT˙U=ranxT,yUx+˙y

Proof

Step Hyp Ref Expression
1 lsmval.v B=BaseG
2 lsmval.a +˙=+G
3 lsmval.p ˙=LSSumG
4 subgrcl TSubGrpGGGrp
5 1 subgss TSubGrpGTB
6 1 subgss USubGrpGUB
7 1 2 3 lsmvalx GGrpTBUBT˙U=ranxT,yUx+˙y
8 4 5 6 7 syl2an3an TSubGrpGUSubGrpGT˙U=ranxT,yUx+˙y