Description: Subgroup sum value (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmval.v | |- B = ( Base ` G ) |
|
| lsmval.a | |- .+ = ( +g ` G ) |
||
| lsmval.p | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmval | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmval.v | |- B = ( Base ` G ) |
|
| 2 | lsmval.a | |- .+ = ( +g ` G ) |
|
| 3 | lsmval.p | |- .(+) = ( LSSum ` G ) |
|
| 4 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 5 | 1 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ B ) |
| 6 | 1 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ B ) |
| 7 | 1 2 3 | lsmvalx | |- ( ( G e. Grp /\ T C_ B /\ U C_ B ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |
| 8 | 4 5 6 7 | syl2an3an | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x .+ y ) ) ) |