| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmfval.v |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
lsmfval.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
lsmfval.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 4 |
1 2 3
|
lsmfval |
⊢ ( 𝐺 ∈ 𝑉 → ⊕ = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
| 5 |
4
|
oveqd |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝑇 ⊕ 𝑈 ) = ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) ) |
| 6 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 7 |
6
|
elpw2 |
⊢ ( 𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵 ) |
| 8 |
6
|
elpw2 |
⊢ ( 𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵 ) |
| 9 |
|
mpoexga |
⊢ ( ( 𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) |
| 10 |
|
rnexg |
⊢ ( ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V → ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ) → ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) |
| 12 |
|
mpoeq12 |
⊢ ( ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) = ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 13 |
12
|
rneqd |
⊢ ( ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 14 |
|
eqid |
⊢ ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 15 |
13 14
|
ovmpoga |
⊢ ( ( 𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ∧ ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 16 |
11 15
|
mpd3an3 |
⊢ ( ( 𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 17 |
7 8 16
|
syl2anbr |
⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 18 |
5 17
|
sylan9eq |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 19 |
18
|
3impb |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |