Metamath Proof Explorer


Theorem lsmub1x

Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B=BaseG
lsmless2.s ˙=LSSumG
Assertion lsmub1x TBUSubMndGTT˙U

Proof

Step Hyp Ref Expression
1 lsmless2.v B=BaseG
2 lsmless2.s ˙=LSSumG
3 submrcl USubMndGGMnd
4 3 ad2antlr TBUSubMndGxTGMnd
5 simpll TBUSubMndGxTTB
6 simpr TBUSubMndGxTxT
7 5 6 sseldd TBUSubMndGxTxB
8 eqid +G=+G
9 eqid 0G=0G
10 1 8 9 mndrid GMndxBx+G0G=x
11 4 7 10 syl2anc TBUSubMndGxTx+G0G=x
12 1 submss USubMndGUB
13 12 ad2antlr TBUSubMndGxTUB
14 9 subm0cl USubMndG0GU
15 14 ad2antlr TBUSubMndGxT0GU
16 1 8 2 lsmelvalix GMndTBUBxT0GUx+G0GT˙U
17 4 5 13 6 15 16 syl32anc TBUSubMndGxTx+G0GT˙U
18 11 17 eqeltrrd TBUSubMndGxTxT˙U
19 18 ex TBUSubMndGxTxT˙U
20 19 ssrdv TBUSubMndGTT˙U