Metamath Proof Explorer


Theorem lsmub2x

Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v B = Base G
lsmless2.s ˙ = LSSum G
Assertion lsmub2x T SubMnd G U B U T ˙ U

Proof

Step Hyp Ref Expression
1 lsmless2.v B = Base G
2 lsmless2.s ˙ = LSSum G
3 submrcl T SubMnd G G Mnd
4 3 ad2antrr T SubMnd G U B x U G Mnd
5 simpr T SubMnd G U B U B
6 5 sselda T SubMnd G U B x U x B
7 eqid + G = + G
8 eqid 0 G = 0 G
9 1 7 8 mndlid G Mnd x B 0 G + G x = x
10 4 6 9 syl2anc T SubMnd G U B x U 0 G + G x = x
11 1 submss T SubMnd G T B
12 11 ad2antrr T SubMnd G U B x U T B
13 simplr T SubMnd G U B x U U B
14 8 subm0cl T SubMnd G 0 G T
15 14 ad2antrr T SubMnd G U B x U 0 G T
16 simpr T SubMnd G U B x U x U
17 1 7 2 lsmelvalix G Mnd T B U B 0 G T x U 0 G + G x T ˙ U
18 4 12 13 15 16 17 syl32anc T SubMnd G U B x U 0 G + G x T ˙ U
19 10 18 eqeltrrd T SubMnd G U B x U x T ˙ U
20 19 ex T SubMnd G U B x U x T ˙ U
21 20 ssrdv T SubMnd G U B U T ˙ U