Metamath Proof Explorer


Theorem lsmless2x

Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmless2.v 𝐵 = ( Base ‘ 𝐺 )
lsmless2.s = ( LSSum ‘ 𝐺 )
Assertion lsmless2x ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → ( 𝑅 𝑇 ) ⊆ ( 𝑅 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lsmless2.v 𝐵 = ( Base ‘ 𝐺 )
2 lsmless2.s = ( LSSum ‘ 𝐺 )
3 ssrexv ( 𝑇𝑈 → ( ∃ 𝑧𝑇 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) → ∃ 𝑧𝑈 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
4 3 reximdv ( 𝑇𝑈 → ( ∃ 𝑦𝑅𝑧𝑇 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) → ∃ 𝑦𝑅𝑧𝑈 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
5 4 adantl ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → ( ∃ 𝑦𝑅𝑧𝑇 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) → ∃ 𝑦𝑅𝑧𝑈 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
6 simpl1 ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → 𝐺𝑉 )
7 simpl2 ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → 𝑅𝐵 )
8 simpr ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → 𝑇𝑈 )
9 simpl3 ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → 𝑈𝐵 )
10 8 9 sstrd ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → 𝑇𝐵 )
11 eqid ( +g𝐺 ) = ( +g𝐺 )
12 1 11 2 lsmelvalx ( ( 𝐺𝑉𝑅𝐵𝑇𝐵 ) → ( 𝑥 ∈ ( 𝑅 𝑇 ) ↔ ∃ 𝑦𝑅𝑧𝑇 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
13 6 7 10 12 syl3anc ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → ( 𝑥 ∈ ( 𝑅 𝑇 ) ↔ ∃ 𝑦𝑅𝑧𝑇 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
14 1 11 2 lsmelvalx ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) → ( 𝑥 ∈ ( 𝑅 𝑈 ) ↔ ∃ 𝑦𝑅𝑧𝑈 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
15 14 adantr ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → ( 𝑥 ∈ ( 𝑅 𝑈 ) ↔ ∃ 𝑦𝑅𝑧𝑈 𝑥 = ( 𝑦 ( +g𝐺 ) 𝑧 ) ) )
16 5 13 15 3imtr4d ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → ( 𝑥 ∈ ( 𝑅 𝑇 ) → 𝑥 ∈ ( 𝑅 𝑈 ) ) )
17 16 ssrdv ( ( ( 𝐺𝑉𝑅𝐵𝑈𝐵 ) ∧ 𝑇𝑈 ) → ( 𝑅 𝑇 ) ⊆ ( 𝑅 𝑈 ) )