Metamath Proof Explorer


Theorem lsmless2

Description: Subset implies subgroup sum subset. (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmless2 SSubGrpGUSubGrpGTUS˙TS˙U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 subgrcl SSubGrpGGGrp
3 2 3ad2ant1 SSubGrpGUSubGrpGTUGGrp
4 eqid BaseG=BaseG
5 4 subgss SSubGrpGSBaseG
6 5 3ad2ant1 SSubGrpGUSubGrpGTUSBaseG
7 4 subgss USubGrpGUBaseG
8 7 3ad2ant2 SSubGrpGUSubGrpGTUUBaseG
9 simp3 SSubGrpGUSubGrpGTUTU
10 4 1 lsmless2x GGrpSBaseGUBaseGTUS˙TS˙U
11 3 6 8 9 10 syl31anc SSubGrpGUSubGrpGTUS˙TS˙U