Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
|- .(+) = ( LSSum ` G ) |
2 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
3 |
2
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> G e. Grp ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
4
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> S C_ ( Base ` G ) ) |
7 |
4
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
8 |
7
|
3ad2ant2 |
|- ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> U C_ ( Base ` G ) ) |
9 |
|
simp3 |
|- ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> T C_ U ) |
10 |
4 1
|
lsmless2x |
|- ( ( ( G e. Grp /\ S C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) /\ T C_ U ) -> ( S .(+) T ) C_ ( S .(+) U ) ) |
11 |
3 6 8 9 10
|
syl31anc |
|- ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> ( S .(+) T ) C_ ( S .(+) U ) ) |