Metamath Proof Explorer


Theorem lsmss1

Description: Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmss1 TSubGrpGUSubGrpGTUT˙U=U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 ssid UU
3 1 lsmlub TSubGrpGUSubGrpGUSubGrpGTUUUT˙UU
4 3 3anidm23 TSubGrpGUSubGrpGTUUUT˙UU
5 4 biimpd TSubGrpGUSubGrpGTUUUT˙UU
6 2 5 mpan2i TSubGrpGUSubGrpGTUT˙UU
7 6 3impia TSubGrpGUSubGrpGTUT˙UU
8 1 lsmub2 TSubGrpGUSubGrpGUT˙U
9 8 3adant3 TSubGrpGUSubGrpGTUUT˙U
10 7 9 eqssd TSubGrpGUSubGrpGTUT˙U=U