Metamath Proof Explorer


Theorem lsmss1

Description: Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙ = LSSum G
Assertion lsmss1 T SubGrp G U SubGrp G T U T ˙ U = U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙ = LSSum G
2 ssid U U
3 1 lsmlub T SubGrp G U SubGrp G U SubGrp G T U U U T ˙ U U
4 3 3anidm23 T SubGrp G U SubGrp G T U U U T ˙ U U
5 4 biimpd T SubGrp G U SubGrp G T U U U T ˙ U U
6 2 5 mpan2i T SubGrp G U SubGrp G T U T ˙ U U
7 6 3impia T SubGrp G U SubGrp G T U T ˙ U U
8 1 lsmub2 T SubGrp G U SubGrp G U T ˙ U
9 8 3adant3 T SubGrp G U SubGrp G T U U T ˙ U
10 7 9 eqssd T SubGrp G U SubGrp G T U T ˙ U = U