Metamath Proof Explorer


Theorem lsmub2

Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmub2 TSubGrpGUSubGrpGUT˙U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 subgsubm TSubGrpGTSubMndG
3 eqid BaseG=BaseG
4 3 subgss USubGrpGUBaseG
5 3 1 lsmub2x TSubMndGUBaseGUT˙U
6 2 4 5 syl2an TSubGrpGUSubGrpGUT˙U